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A Procedure for the Improved Continuous Stress Field of 
Composite Media 

K e e - N a m  S o n g *  

(Received December 2, 1997) 

Interracial tractions at the interface of two different materials and the initial displacement field 

over the entire domain are obtained by modifying the potential energy functional with a penalty 

function, which enforces continuity of the stresses at the interface of two different raaterials. 

Based on the initial displacement field and the interracial tractions, a method Io build a 

continuous stress field over the entire domain has been proposed by combining the modified 

projection method for the stress-smoothing and the Loubignac-Cantin iteration for the restora- 

tion of momentum balance in the smoothed stress fields. Stress analysis is carried out on two 

examples made of highly dissimilar materials. Results of the analysis show that the proposed 

method provides an improved continuous stress field over the entire domain, and accurately 

pre.dicts the nodal stresses at the interface of two different materials. In contrast, the conven- 

tional displacement-based finite element method produces significant stress discontinuities at the 

interface of two different materials. In addition, the total strain energy evaluated tu the 

improved continuous stress field rapidly converges to the exact solution as the number of 

iterations increases. 

Key Words : Displacement-based Finite Element Method, Dissimilar Material, Penalty Func- 

tion Method, Stress Smoothing Method, Conjugate Stress, Interface Traction 

1. Introduction 

Mediia consisting of different materials are 

becoming increasingly common in engineering 

structures. Examples include thermostats for 

measuring temperature, metallic parts of etched 

silicon bases of microchips, attachments between 

prosthetic materials and biological tissues in 

orthopedic biomechanics, heat-resistant materials 

in aerospace vehicles, and the zirconium-lined 

cladding tubes of nuclear fuel rods. In such non 

-homogeneous composites, accurate evaluation of 

the stresses at the interfaces between dissimilar 

materials are usually of significant importance in 

both their analysis and design (Shirazi-Adl, 

1992; Kim and Lee, 1994; Kim, 1994). To ensure 

a perfect bond, the computed interracial stresses 

should not exceed the bond strength; otherwise 
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separation may occur, which could completely 

change the displacements and stresses, requiring 

re-analysis with updated interface conditions. 

Assuming a perfect bond at the interface, i. e., no 

separation or slip at the interface, the in-plane 

tangential strain must be continuous, while the 

normal and shear strains may be discontinuous. 

The stress boundary conditions at the interface 

are determined from the required continuity of the 

traction vector. That is, in contrast to the strain 

components, the normal and shear stress compo- 

nents are required to be continuous,, while the 

tangential component should be discontinuous. 

in the displacement-based finite element 

method, the displacements are the primary un- 

knowns of the analysis, and are usually taken to 

be continuous to the degree that the fianctional of 

the problem requires. The stresses in each element 

are then evaluated based on the displacements 

and constitutive relations. However, such a con- 

sistent procedure results in stresses that are incom- 
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patible at the interface between adjacent elements. 

To overcome this shortcoming, several suggested 

procedures have been proved to be effective in the 

analysis of homogeneous media because of the 

small discrepancies in inter-element stresses re- 

ported in the literature(Brauchli and Oden, 1971; 

Hinton and Campbell, 1974; Loubignac, Cantin, 

and Touzot, 1985; Zienkiewicz and Zhu, 1992). 

Zienkiewicz, Li, and Nakazawa(1985) proved 

that combining the projection method for stress 

-smoothing and the Loubignac-Cantin iteration 

for the restoration of momentum balance in the 

smoothed stress fields was identical to the mixed 

formulation when full convergence was reached. 

In addition, Zienkiewicz et aL(1985) showed 

that the combining of the projection method and 

the Loubignac-Cantin iteration could effectively 

solve a mixed stress displacement formulation of 

elasticity problems. However, those procedures 

are primarily of a post-processing nature, and are 

based on computed nodal displacements. Since 

the stress incompatibility becomes evident, espe- 

cially at the interface of two different materials, 

even for the stress components which must be 

continuous,  the foregoing post processing 

methods which were proposed to overcome a 

violation of the inter-element equilibrium are not 

suitable in the analysis of non-homogeneous 

media. In particular, the foregoing post process- 

ing methods may result in severe oscillations of 

the solution at the interface of two different 

materials. 

Recently, research to find the stress field at two 

material interl:aces has been carried out. Shirazi 

-Ad1(1989, 1992) proposed thai a penalty func- 

tion be added to the usual potential energy func- 

tional. The penahy function enforces the compati- 

bility of traction on the element interlaces of two 

difl'erent materials. The modified functional is 

minimized and the equations generated are solved 

in the conventional manner. The stresses are then 

calculated from the predicted nodal displacements 

using strain-displacement relations and con- 

stitutive equations. This formulation results in no 

extra degrees of freedom but the structural band- 

width may increase. Chouchaoui and Shirazi Adl 

(1992) and Kim and Lee(1994) proposed mixed 

variational formulations based on the Hellinger 

-Reissner theorem, and Kim(1994) proposed a 

perturbed Lagrangian method for the2 Ddissim- 

ilar bonding problem. 

In this study, the initial displacement field over 

the entire domain and the interracial tractions at 

the interface of two difl'erent materials are 

obtained by modifying the potential energy func- 

tional with a penalty function. The interracial 

tractions at the interlace of two different materials 

are imposed as the constraints in the projection 

method for stress smoothing. New displacement 

fields and displacement-consistent stress fields are 

then obtained by combining the modified projec- 

tion method with koubignac-Cantin iteration. 

Stress analysis is carried out on two examples 

made of highly dissimilar materials. 

2. Finite Element  Formulation 

Figure I shows the domain consisting of dis- 

similar materials, Assuming a perfect bond at the 

interface of two difl'erent materials, the conslraint 

equations of the intert:ace tractions may be written 

a s :  

"F/' ~-7;'~=0 (1) 

where superscripts a and b denote the material 

sides of the interface of two different materials, 

and subscript i varies from 1 to 3 in a three 

dimensional analysis. This equation can be 

regarded as the Euler equation of the conven- 

tional potential energy functional. The usual 

potential energy, a'p, may be modified by impos- 

ing the constraint Eq. (1) as a penalty term: 

, I 
zc:, zc.=--.2-c~j. ' ( T,.<'+ TP)~dS; (2) 

where ff is a penalty number and S represents the 

common interface surface. The first term on the 

right hand side results in the well-known element 

equations and is not discussed further. In the 

Fig. 1 Interface traction acting on a bi-metallic 
interface between two region a and b. 
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second penalty term, Tfl and T, b may be expres- 

sed as vectors by: 

{ T q - [ ~  ~'] E~:~] IB<'I Idq (3) 
{ T " } -  E,P] [E " ]  ~ ~ " ]  {d"}  (4) 

where [n] is the matrix of the directional cosines 

of the unit outward vector normal to the interFace 

S; t E l  is the elasticity matrix; [B] is the strain 

displacement matrix; and {d} is the column 

vector of the element nodal displacements. Com- 

bining the two adjacent interface elements into 

one with {d ~} as the column vector of displace- 

ments, we obtain: 

{ T  ~' + T b) -. IK~'! {o-'"} (5) 

where 

�9 - [ E " I  [ , 9 " ]  [ 7'~]) (6) 

and [T~I and [Tb]  are the transformation 

matrices. Finally, the symmetric stiffness matrix 

for the interlace of two different materials due to 

the penahy function is: 

= f  EKo,,  as (71 [Ks 

which should be added to the conventional stiff- 

ness matrix, [KI .  i. e., 

[K*I = [.K] + ce[K~] (8) 

Then, the system equations become: 

IK*]{u}-{/} (9)  

where {zr is the column vector of nodal dis- 

placement components for the entire domain and 

{f} the column vector of the resultant nodal 

forces. 

The terms in the interface penalty matrix IAp] 

are noled to be larger than those in the conven- 

tional stifl'ness matrix, the difference being of the 

same order as that of the rnoduli. Considering the 

difl'erence in the order of the moduli, therefore, an 

appropriate penalty can be selected in the formu- 

lation. 

3. Build-up of the Continuous 
General ized-stress  Field 

Assuming that the stress field maintains C ~ 

continuity, the stress field, {o'*}, is expressed as a 

linear combination of the nodal ,,;tress vector, 

{#*}, and the shape function vector. [IV*I, as 

follows: 

{~'1 [.x*]{ n*} (10) 
Usually in the analysis of homogeneous media, 

the nodal stress vector, { 6*}, can be obtained by 

the following projection method (Zienkiewicz, Li, 

and Nakazawa, 1985) of the discontinuous stress 

field, {0"}, fi-orn the conventional finite element 

method in the mean sense: 

I = ~ [ N * ] ' ( { d * }  {a})df2=O (11) 

Results tu Eq. (I1) in the analysis of non 

--homogeneous media, however, provide not only 

inappropriate stress fields over the entire domain, 

but also inaccurate interracial tractons at the 

interface of two different materials. 

At the interlace of two different materials, 

therefbre, tile stress field should be the same as the 

interface lractions, {o',p}, which are obtained from 

the penahy finite element formulation of Sec. 2: 

{a*},::{a~;,} (12) 

In order to build a stress field (i. e., the field 

composed of continuous stress and strain compo- 

nents at the interlace) over the entire domain 

which satisfy the interface tractions, the func- 

tional (11) may be modified by imposing the 

specified tractions of Eq. (12) as follows(Song, 

1997): 

i*= i ~ f I N * J ~ q a * I - { a , ~ I ) a x = 0  (~3) 

where a(  is a penalty number and 5" represents 

the common interface surlhce. Re-arranging Eq. 

(13) with respect to {?Y*} yields the following: 

f Iix*l 'I<~)<m +.of  Ix*l '{ ~...,1 <zs" 
(14) 

Solving Eq. (14) for {d*}, the continuous 

stress field over the entire domain satisfying the 

specified tractions at the interface of two different 

materials is obtained from Eq. (10). 
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4. Iterative Method 

The nodal force vector, {f*}, due to a continu- 

ous stress field, {o'*}, is obtained by the follow- 

ing equilibrium equations: 

f iB ]  * T{ ~*} d~Q ={f*} (15) 

where EBb* denotes a generalized strain-dis- 
placement matrix defined as follows: 

E B I * =  [B]  for continuous stress components, 

and 

EB]*=  [ E l  IB~ for continuous strain compo- 
nents. 

Since the nodal force vector, {f*}, does not 

equal the force, {f}, from the original finite ele- 

ment equilibrium, a new displacement field is 

built by the following iterative algorithm. While 

Loubignac, Cantin, and Touzot(1977) used sim- 

ple nodal averaging to obtain {or*}, which could 

be inaccurate at the interface of two different 

materials, a continuous stress field obtained from 

the procedure in Sec. 3 is used. 

i) ( A u } e =  I K ] - 1  ({f}  

- ~m,~EBl*r{~r*}d~2~) (16) 

ii) Compute the nodal force vector that corre- 

sponds to the stress, ~7" 

fe:~EB3rff*d~Qe:~ ~V]rN*df2e~ * (17) 

S*=eZe~ne . i e= ~, f El~lT~*d,-Oe nem~ elenemt ~l fze 

:ele~nernt~e EB~rN * d.Q~d* (18) 

and the L2-norm of force-imbalance, IIAflb at the 
i th iteration is defined as follows: 

IlAfll~ = f~ ( f -  f~) T ( f _  fe) d-Q (19) 

iii) {u}i+~--{u}~+{Au} i, i = 1 , 2 ,  3 , . . .  (20) 

iv) {~},+1= [E3 [B3*{u} ~+~ (21) 

v) Build a new continuous stress field using 

the procedure in Sec. 3. 

vi) Go to step i) unless the Lz-norm of the 

perturbed displacement, II~ull ~ is less than a 
preset value. 

In this study, 1.0E-03 is used as the preset value 

of Ibztull i 
The Total strain energy(Uwtat) from the con- 

tinuous stress field is obtained as follows: 

1 *r * l :gT 1 * 
U,ot~l=~- fv~ r dV=~-  f cr E- ~ dV(22)  

where ~* denotes the strain in the domain. 

5. Numerical Examples 

5.1 Example  1: T w o - m a t e r i a l  cant i l ever  
beam under end load 

Figure 2 shows a cantilever beam composed of 

two highly dissimilar materials, in which the 

elastic modulus of one material is a hundred times 

as large as that of the other, and shows its finite 

element model with quadrilateral plane stress 

elements. The end forces are computed and 

applied in a manner consistent with the quadratic 

variation of end shear stresses in each material 

region evaluated based on the analytical solution 

(Muskhelishvili, 1963, pp. 641--649). The results 

for the penalty formulation are based on a = 0 ,  ae 

= 10000, and one-point  integration. The analyti- 

cal solution is compared with the conventional 

d isp lacement-based  finite element solut ion 

(ANSYS results) and the present results. The 

variation of the stresses at the interface of two 

different materials along the beam is shown in 

Fig. 2 A two-material cantilever beam under 
end load. 
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Fig. 3 Variation of the normal stress at the two 
-.material interface along the cantilever beam 

(E,/E~-- 100). 

Fig, 5 Total strain energy vs. iteration numbers for 
the two-material  cantilever beam (El / /~2= 
100). 

Fig. 4 Variation of  the shear stress at the two 
-material interface along the cantilever beam 

(E,/E2- 100). 

Figs. 3 and  4. C o m p a r i s o n  of  the results of  the 

conven t iona l  finite e lement  analysis  reveals a very 

s ignif icant  d i scon t inu i ty  between the compu ted  

stresses on the ha rd  and  soft sides of  the  interface. 

However ,  the present  me thod  yields near ly  identi-  

Fig. 6 Variation of the normal stres,,; at the two 
-material  interface along the cantilever beam 

(Ex/ E2=O.OI ) 

cal stresses in bo th  mater ia ls  at the interface. In 

add i t ion ,  bo th  stresses from the present  me thod  

and  the c o n v e n t i o n a l  finite e lement  stresses on the  

soft side of  the  interface are in agreement  with  the  

exact results (Oy=0, vxy=0.21929 MPa)  in every 
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area except the region close to the fixed end. The  

va r i a t ion  in total  s t ra in  energy ca lcula ted  from 

Eq. (22) as i tera t ion number s  is shown  in Fig. 5. 

Tota l  s t ra in  energy at the 0 - th  i tera t ion denotes  a 

value  from the conven t i ona l  averaged stress field. 

F igure  5 shows that  the total  s t ra in  energy rapid ly  

increases and  converges  to the exact result  (Uto~az 

0.74210E-1 MJ) in a few i terat ions.  

When  the modul i  are reversed, s imi lar  observa-  

t ions  are made.  The  var ia t ion  of  the stresses at the 

inter lace of  two different mater ia ls  a long  the 

beam is shown  in Figs. 6 and  7. C o m p a r i s o n  of  

the results of  the conven t iona l  finite e lement  

analys is  also reveals a very s ignif icant  d i scon t inu-  

ity between the compu ted  stresses on the hard  and  

soft sides of  the interface. However ,  the present  

me thod  yields nearly identical  stresses in bo th  

mater ia l s  at the interface. In addi t ion ,  bo th  stres- 

ses f iom the present  me thod  and  the conven t iona l  

finite e lement  stresses on the soft side of  the 

interface are in agreement  with the exact results 

Fig. 7 Variation of the shear stress at the two 
material interface along the cantilever beam 

(E~/E~ 0.01) 

Fig. 9(a) A plate containing a circular disc of a 
different material under tension. 

Fig. 8 Total strain energy vs. iteration numbers 
for the two material cantilever beam 
( E,/fC,~ -= 0.01 ). Fig. 9(b) Finite element model. 
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(cry-0,  z:,:~, 0.0216345 MPa) in every area except 

the region close to the fixed end. The variat ion in 

total strain energy versus number  of  iteration as 

shown in Fig. 8, shows thal the total strain energy 

also rapidly increases and converges to the exact 

result(/]j<,~<,l 0.14227E 1 MJ) in a fev, itera- 

tions. Convergence  o f  the tolal strain energy to 

the exact restilt, as shown in Figs. 5 and 8, denotes 

that the cont inuous stress field tu the present 

method is rapidly improved as the iteration pro- 

ceeds. 

From Figs. 3, 4, 6, and 7, the stresses on the soft 

side of  the two- material  interfitce seem to be more 

reliable than the hard side. However,  the fact that 

this observation is not true in general can be seen 

in the fol lowing example. 

analytical  solution tbr art infinite plate conta ining 

a circular  disc of  different material is avai lable in 

the l i terature(Muskhel ishvi l i ,  1963). The size of  

the plate relative to the disc in Fig. 9 justifies the 

use of  this closed--f'orm analytical solution. Fig- 

5.2 Example 2: Plate with circular inclusion 

of different material 

Figure 9(a) shows a plate conta in ing a circular  

disc made of  a material 100 times softer than a 

plate and subjected to a unilbrrn uniaxial tension 

al bolh its ends. Fig. 9(b) shows its finite elemenl 

model  with quadri la teral  plane strain elernenls. 

Due to symmelry, one quarter of  the plate is 

taken for analysis, as shown in Fig. 9. The 

Fig. 11 Shear stresses tit the two material interface 
along the circumference (soft inclusion. 

E , / E :  : :  0.01 ) 

Fig. 10 Normal stresses at the two-material inter- 
lace along tile circumference(soft inclusion, 

I~I/E~-:O.OI). 

Fig. 12 Total strain energy vs. interation numberslbr 
a plate containing a circular disc (soft inclu- 
si()n, El/E:,-.=:0.0] ) 
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ures 10 and 11 show the var ia t ion of  stresses 

a long the interface of  two different materials for 

the convent ional  finite element solution, the pres- 

ent results and the c losed- form analytical solu- 

tion. Again,  a very significant discontinuity is 

seen between the stresses by the convent ional  

finite element method on the hard and soft sides 

of  the interface. And  the stresses from the present 

method are in agreement with the convent ional  

finite element stresses on the soft side of  the 

interface and the analytical solution. The  varia- 

tion of  total strain energy versus number  o f  itera- 

t ion as shown in Fig. 12, shows that the total 

strain energy rapidly increases and converges to a 

somewhat  smaller value than the assumed analyti- 

1 
cal solut ion from a refined mesh o f ~ h  in a few 

iterations. 

When the modul i  are reversed, an interesting 

observat ion is made. The variat ion o f  the stresses 

at the interface of  two different materials is shown 

in Figs. 13 and 14. Compar i son  of  the results of  

the convent ional  finite element analysis also 

reveals a very significant discontinuity between 

the computed  stresses on the hard and soft sides of  

the interface. In contrast  to the previous analysis, 

however,  the results on the hard side are closer to 

the exact solut ion than those on the soft side. The 

indicat ion that the stresses on the softer side of  a 

two-mate r ia l  interface are more reliable than 

those on the harder side is, therefore, not a gener- 

Fig. 14 Shear stresse at the two-material interface 
along the circumference (hard inclusion, 

E~/ Ez-- 100). 

Fig. 13 Normal stresses at the two-material inter- 
face along the circumference (hard inclu- 
sion, E2/E~= 100). 

Fig. 15 Total strain energy vs. iteration numbers for 
a plate containing a circular disc (hard 
inclusion, El/Ez= 100). 
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al one. The variation of total strain energy versus 

number of iteration as shown in Fig. 15, shows 

that the total strain energy also rapidly increases 

and converges to a somewhat smaller value than 

the assumed analytical solution fi'om a refined 

I 
mesh of ~ / r  in a few iterations. 

6. Conclusions  

The initial displacement field and interracial 

tractions are obtained by modifying the potential 

energy functional with a penalty function, which 

enforces the continuity of stresses at the interface 

of two different materials. The conventional pro- 

jection method for stress smoothing is modified 

by imposing the interracial tractions as the con- 

straints. An iterative procedure to build a contin- 

uous stress field over the entire domain, including 

at the interface of dissimilar materials, is 

proposed by combining the modified projection 

method for stress-smoothing with the Loubignac 

Cantin iteration for the restoration of momen- 

tum balance in smoothed stress fields. The 

proposecl iterative procedure is used for stress 

analysis on two examples consisting of highly 

dissimilar materials, and the results are compared 

with those obtained from conventional finite 

element analysis and exact solutions. The 

proposecl iterative procedure is performed satis- 

factorily in the test examples in a few iterations, 

and is therefore considered to be a reliable and 

cost-effective method to build an improved con- 

tinuous stress field over the entire domain, includ- 

ing the interface of dissimilar materials. In con- 

trast, the conventional displacement-based finite 

element formulation results in significantly dis- 

continuous stresses at the interface of two differ- 

ent mate:rials. 

References  

ANSYS User's Manual for Revision 5.0, 1992, 
Swanson Analysis System, Inc. 

Brauchli, H. J. and Oden, J. T. , 1971, "Conju- 

gate Approximation Function in Finite-element 

Analysis," Quarter O' of  Applied Mathematics, 

No. 1, April, pp. 65--90. 

Chouchaoui, B. and Shirazi-Adl, A., 1992," A 

Mixed Finite Element Formulation for the Stress 

Analysis of Composite Structures," Computers & 
Structures, Vol. 43, No. 4, pp. 687-~698. 

Hinton, E. and Campbell, J. S., 1974, "Local 

and Global Smoothing of Discontinuous Finite 

Element Functions Using a Least Squares 

Method," International Journal .for Numerical 
Methods in Engineering, Vol. 8, pp. 461--480. 

Kim, D. S. and Lee, B. C., 1993, "Application 

of the Combined Mixed Functional to Finite 

Element Analysis of Bonding Problems," 

Computational Engineering (Edited by B. M. 

Kvvak and M. Tanaka),  ELSEVIER, AMSTER- 

DAM, pp. 77--82. 

Kim, Y. H., 1994, "Analysis of 2-D Bonding 

Problems Using Perturbed Lagrangian Method," 

M. S. Thesis, KAIST (in Korea). 

Loubignac, G., Cantin, G., and Touzot, G., 

1977, "Continuous Stress Field in Finite Element 

Analysis," AIAA Journal, Vol. 15, No. l I, pp. 

1645 ~ 1646. 

Muskhelishvili, N. l., 1963, Some Basic Prob- 
lems of  Mathematical Theory a]" Elasticity 
(Translated by J. R. M. Radok), pp 205~229. 

pp. 641 ~649, Noordhofl', Groningen, Holland. 

Shirazi Adl, A., 1989, "An Interlace Continu- 

ous Stress Penalty Formulation for the Finite 

Element Analysis of Composite Media," Com- 
puters & Structures, Vol. 33, No. 4, pp. 951 

~956. 

Shirazi Adl ,  A., 1992, "Finite Element Stress 

Analysis of a Push out Test Part 1: Fixed Inter- 

face Using Stress Compatible Elements," ASME 
Journal of  Biomechanical Engineering, Vol. 114, 

pp. 111--118. 

Song, K. N., 1997, "A Study on the Improve- 

ment Method of the Stress Field Analysis in a 

Domain ( 'omposed of Dissimilar Materials," 

Trarlsactions of  KSME(A) ,  Vol. 21, No. 1 I, pp. 

1844~1851 (in Korea). 

Zienkiewicz, O. C., Xi-Kui,  Li, and Nakazawa, 

S., 1985, "lterative Solution of Mixed Problems 

and the Stress Recovery Procedures," Communi- 
cations & Applied Numerical Method, Vol. I, pp. 

3 ~ 9  



880 Kee Nam Song 

Zienkiewicz, O. C. and Zhu, J. Z., 1992, "The 
Superconvergent Patch Recovery and a Posteriori 

Error Estimates. Part I: The Recovery Tech- 
nique," International Journal .for Numerical 

Methods in Engineering, Vol. 33, pp. 1331-  1364. 
Zienkiewicz, O. C., Vilotte, J. P., Toyoshimm 

S., and Nakazawa, S., 1985, "lterative Method for 
Constrainted and Mixed Approximation. An In- 
expensive Improvement of F. E. M Performance," 
Computer Methods in Applied Mechanics and 

Engineering, Vol. 51, pp. 3--29. 


